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Abstract

Hydroxyurea (HU) is the cornerstone pharmacologic agent for inducing fetal hemoglobin (Hb F) in sickle cell disease (SCD) and B-thalassemia. Although it has
demonstrated substantial clinical benefits, a subset of patients exhibits suboptimal Hb F response, limiting its therapeutic efficacy. This mini-review summarizes
current knowledge on the mechanisms of poor Hb F induction with HU, focusing on genetic polymorphisms in key quantitative trait loci (BCL11A, HBSI1L-
MYB, and HBG2), epigenetic regulation of y-globin gene expression, and pharmacokinetic variability driven by differences in drug metabolism and clearance.
We also discuss the clinical implications of these resistance mechanisms and potential strategies to enhance HU responsiveness, including precision medicine

approaches and emerging adjunct therapies. Understanding these factors is essential for optimizing HbF induction and improving outcomes in

hemoglobinopathies.

Introduction

Sickle cell disease (SCD) and B-thalassemia are among the most prevalent differentiation, and potentially affecting nitric oxide signaling and y-globin
inherited hemoglobinopathies worldwide, contributing significantly to global gene activation [10-13]. Clinical trials have demonstrated that HU reduces
morbidity and mortality, especially in sub-Saharan Africa, the Middle East, painful crises, acute chest syndrome, and transfusion needs while improving
and South Asia [1,2]. SCD results from a point mutation in the B-globin gene survival in SCD [14,15]. However, inter-patient variability in HU response
(HBB), leading to sickle hemoglobin (Hb S) production, erythrocyte sickling, remains a major clinical challenge, with approximately 20-30% of patients
vaso-occlusion, and chronic hemolysis [3,4]. B-Thalassemia arises from demonstrating suboptimal Hb F induction [16,17].
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Fetal hemoglobin (Hb F; a2y2) has long been recognized as a major disease [18,19]. Epigenetic mechanisms such as DNA methylation and histone
modifier. Its continued expression inhibits Hb S polymerization and modifications maintain y-globin silencing and may limit HU’s efficacy
ameliorates the ineffective erythropoiesis of P-thalassemia [6,7]. Patients [20,21]. Furthermore, microRNAs (miRNAs) have emerged as key post-
with elevated Hb F levels due to hereditary persistence of fetal hemoglobin transcriptional regulators of y-globin gene expression [22]. Pharmacokinetic
(HPFH) or pharmacologic induction often experience fewer complications factors, influenced by polymorphisms in genes such as CYP2D6, CAT, and
and better survival outcomes [8]. SLCI4Al, can also affect HU bioavailability and therapeutic outcomes
Hydroxyurea (HU) is the first and only FDA-approved disease-modifying [23,24].

therapy for SCD and is widely used off-label in B-thalassemia intermedia [9]. This mini-review explores these mechanisms of HU resistance and highlights
HU increases Hb F by inducing stress erythropoiesis, altering erythroid current and future strategies to overcome them.
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Figure 1. Mechanisms of Resistance to Hb F Induction by Hydroxyurea

Discussion

1. Genetic Determinants of HU Response

Genetic polymorphisms in Hb F-associated loci significantly influence HU
response. Variants in BCL11A, a key y-globin repressor, are strongly
associated with higher baseline Hb F levels and improved HU responsiveness
[18]. Similarly, SNPs in the HBS1L-MYB intergenic region modulate
erythroid differentiation and Hb F expression [19]. The Xmnl (—158 C>T)
polymorphism upstream of HBG2 correlates with enhanced Hb F production
in response to HU [20]. Studies have also implicated genes involved in stress
erythropoiesis, such as ARG1, SAR1A, and NOS1, though findings remain

heterogeneous [21].

2. Epigenetic and Transcriptional Regulation

Epigenetic repression of y-globin genes involves DNA methylation and
histone deacetylation. HU may partially reverse these modifications by
inducing stress erythropoiesis and activating pathways that downregulate
repressors such as BCL11A and KLF1 [22]. miRNAs, including miR-15a,
miR-26b, and miR-151-3p, have been identified as mediators of y-globin
reactivation via suppression of these transcriptional repressors [23].
However, inter-individual differences in epigenetic regulation may underlie

resistance in some patients.

3. Pharmacokinetic Variability

HU bioavailability and metabolism vary widely among individuals.
Polymorphisms in CYP2D6, CAT, and SLC14A1 can affect drug absorption,
distribution, and clearance [24,25]. Rapid metabolism or poor absorption may
lead to subtherapeutic HU levels, contributing to poor HbF induction.
Population pharmacokinetic models support the potential for genotype-

guided HU dosing strategies to optimize therapy [26].

4. Clinical Implications and Future Directions

The identification of genetic and epigenetic biomarkers for HU

responsiveness has enabled the development of predictive algorithms to

guide personalized therapy. Adjunct treatments, such as DNA
methyltransferase inhibitors (decitabine) and histone deacetylase inhibitors,
are under investigation to augment HU-induced Hb F production [27]. Gene-
editing technologies targeting BCL11A and other repressors represent
promising avenues for achieving sustained Hb F induction in poor HU

responders [28].

Conclusion

Poor Hb F induction with HU therapy in SCD and B-thalassemia is a complex
phenomenon involving genetic, epigenetic, and pharmacokinetic factors. A
precision medicine approach incorporating predictive genomics and
pharmacogenetics may improve treatment outcomes. Further research into
adjunct therapies and novel agents targeting Hb F repression pathways holds

promise for patients who are resistant to HU.
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